Targeting N-cadherin increases vascular permeability and differentially activates AKT in melanoma.
نویسندگان
چکیده
OBJECTIVE We investigate the mechanism through which N-cadherin disruption alters the effectiveness of regional chemotherapy for locally advanced melanoma. BACKGROUND N-cadherin antagonism during regional chemotherapy has demonstrated variable treatment effects. METHODS Isolated limb infusion (ILI) with melphalan (LPAM) or temozolomide (TMZ) was performed on rats bearing melanoma xenografts after systemic administration of the N-cadherin antagonist, ADH-1, or saline. Permeability studies were performed using Evans blue dye as the infusate, and interstitial fluid pressure was measured. Immunohistochemistry of LPAM-DNA adducts and damage was performed as surrogates for LPAM and TMZ delivery. Tumor signaling was studied by Western blotting and reverse-phase protein array analysis. RESULTS Systemic ADH-1 was associated with increased growth and activation of the PI3K (phosphatidylinositol-3 kinase)-AKT pathway in A375 but not DM443 xenografts. ADH-1 in combination with LPAM ILI improved antitumor responses compared with LPAM alone in both cell lines. Combination of ADH-1 with TMZ ILI did not improve tumor response in A375 tumors. ADH-1 increased vascular permeability without effecting tumor interstitial fluid pressure, leading to increased delivery of LPAM but not TMZ. CONCLUSIONS ADH-1 improved responses to regional LPAM but had variable effects on tumors regionally treated with TMZ. N-cadherin-targeting agents may lead to differential effects on the AKT signaling axis that can augment growth of some tumors. The vascular targeting actions of N-cadherin antagonism may not augment some regionally delivered alkylating agents, leading to a net increase in tumor size with this type of combination treatment strategy.
منابع مشابه
N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells.
During melanoma development, loss of functional E-cadherin accompanies gain of expression of N-cadherin. The present study was carried out to investigate the functional significance of N-cadherin in melanoma cells. N-Cadherin mediated homotypic aggregation among melanoma cells as well as heterotypic adhesion of melanoma cells to dermal fibroblasts and vascular endothelial cells. Blocking of N-c...
متن کاملDiabetes causes bone marrow endothelial barrier dysfunction by activation of the RhoA-Rho-associated kinase signaling pathway.
OBJECTIVE Diabetes mellitus causes bone marrow (BM) microangiopathy. This study aimed to investigate the mechanisms responsible for BM endothelial dysfunction in diabetes mellitus. METHODS AND RESULTS The analysis of differentially expressed transcripts in BM endothelial cells (BMECs) from type-1 diabetic and nondiabetic mice showed an effect of diabetes mellitus on signaling pathways control...
متن کاملVascular endothelial growth factor stimulates differential signaling pathways in in vivo microcirculation.
Vascular endothelial growth factor (VEGF) induces mild vasodilation and strong increases in microvascular permeability. Using intravital microscopy and digital integrated optical intensity image analysis, we tested, in the hamster cheek pouch microcirculation, the hypothesis that differential signaling pathways in arterioles and venules represent an in vivo regulatory mechanism in the control o...
متن کاملAnti-tumor Effect of Ginkgo biloba Exocarp Extracts on B16 Melanoma Bearing Mice Involving P I3K/Akt/HIF-1α/VEGF Signaling Pathways
The objective of this study is to investigate the anti-tumor effect of Ginkgo biloba exocarp extracts (GBEE) on B16 melanoma bearing mice and its related molecular mechanisms. The B16-F10 melanoma solid tumor model was established in C57BL/6J mice. The tumor-bearing mice were treated with GBEE (50, 100, 200 mg/kg), taking cis-Dichlorodiamineplatinum (Ⅱ) (DDP, 3 mg/kg) as pos...
متن کاملVE-cadherin RGD motifs promote metastasis and constitute a potential therapeutic target in melanoma and breast cancers
We have investigated the role of vascular-endothelial (VE)-cadherin in melanoma and breast cancer metastasis. We found that VE-cadherin is expressed in highly aggressive melanoma and breast cancer cell lines. Remarkably, inactivation of VE-cadherin triggered a significant loss of malignant traits (proliferation, adhesion, invasion and transendothelial migration) in melanoma and breast cancer ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annals of surgery
دوره 261 2 شماره
صفحات -
تاریخ انتشار 2015